MUTUAL OPTICAL RESOLUTION OF 2,2 '-DIHYDROXY-l,l'-BINAPHTHYL AND ALKYL ARYL OR DIALKYL SULFOXIDES BY COMPLEX FORMATION

Fumio Toda,* Koichi Tanaka, and Shinji Nagamatsu Department of Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

Summary: By complexation with optically active 2,2'-dihydroxy-l,l'-binaphthyl, alkyl aryl and dialkyl sulfoxides were resolved very efficiently. Reversely, by complexation with optically active alkyl aryl or dialkyl sulfoxides, 2,2' dihydoxy-l,l'-binaphthyl was resolved very efficiently, In all cases, 100% optically pure $(+)$ - and $(-)$ -enantiomers were obtained in good yields.

Previously, we have reported a simple optical resolution method of 3 la la lb methylcycloalkanones, 5-methyl-y-butyrolactone, and 2,3-epoxycyclohexanones by complexation with optically active $1,6$ -bis(\circ -halophenyl)-1,6-diphenylhexa-2,4-diyne-1,6-diol. Recently, we found that 2,2'-dihydroxy-1,1'-binaphthyl (1) and alkyl aryl (2) or dialkyl sulfoxides (2) form a crystalline complex in which each component recognizes the chirality of the other very efficiently; mutual optical resolution can be done very easily by using the complex formation,

Optically active $\frac{1}{k}$ is an useful compound for the preparation of chiral 2 $\frac{3}{2}$ crown ethers and enantioselective reducing reagents for ketones, and for the 4 stereoselective polymerization of heterocycles and stereoselective Ullmann 5 2,6 coupling reaction. Optical activation of 1 by resolution have been reported. The simplest and most successful preparative method for optically active $\frac{1}{6}$ is a 7 stereoselective coupling reaction of 2-hydroxynaphthalene by cupric nitrate in 7c the presence of $(S) - (+) -1$ -phenyl-2-propanamine. Nonetheless, this method does not give 100% optically pure λ . Furthermore, $(S)-(+)$ -1-phenyl-2-propanamine is a central stimulant. Preparation of optically pure sulfoxides is not 8 easy, even though some preparative methods by optical resolution and stereo-9 selective reaction have been reported. Our mutual resolution method is very

4929

simple and can be used to obtain optically pure $1, 2,$ and 3 in both enantiomeric forms.

When a solution of 100% ee (R)-(+)- $\frac{1}{\lambda}$ (3.0 g, 10.5 mmol, [$\alpha\rfloor_{\text{D}}$ +37.7 $^{0.10}$ and (\pm)-methyl m-methylphenyl sulfoxide ($2c$) (3.23 g, 21.0 mmol) in benzene-n-hexane (1:1, 20 ml) was kept at room temperature for 12 h, a 1:1 complex of $(R) - (+) - \frac{1}{k}$ and $(+)$ - 2ξ (4.10 g, 89%, [a]_n +52.7[°]) was obtained as colorless prisms, Recrystallization from benzene (30 ml) gave a complex (3.57 g, 77%, mp 152-154 °C, $\lbrack \alpha \rbrack_{\mathsf{n}}$ +69.7), which upon chromatography 11 12 gave 100% ee (+)-2̥ç (1.24 g, 77%, $[\alpha]_{\text{D}}$ +140°) and 100% ee $(R) - (+) - \frac{1}{6}$ (2.32 g, 77%, $[\alpha]_{\text{D}}$ +37,7°). The mother liquor left from the initial complexation reaction was evaporated to dryness and the residue was chromatographed to give 62% ee $(-)$ - 2ξ (1.30 g, 80%, [a]_n -86,2^o). When a solution of the 62% ee $(-) - 2c (1.30 g, 8.44 mmol)$ and 100% ee $(S) - (-) - 1$ (2.41 g, 8.44 mmol, $[\alpha]_D$ -37.7°) in benzene (10 ml) was kept at room temperature for 12 h, a 1:1 complex (2,39 g, 52%, $\left[\alpha\right]_D$ -62,9°) was obtained, Recrystallization from benzene (15 ml) gave a complex (1.79 g, 39%, mp 152-154 °C, $[\alpha]_p$ -69.8^o), which upon chromatography gave 100% ee (-)- $2c$ (0.62 g, 38%, [a]_n -140^o) and 100% ee $(S) - (-) - \frac{1}{6}$ (1.16 g, 48%, [a]_n -37.7^o).

Conversely, optically active $2e$ can be used for an optical resolution of $\frac{1}{k}$, When a solution of 100% ee (-)- $\chi_{\rm c}$ (1.40 g, 9.10 mmol, $\left[\alpha\right]_{\rm D}$ -140°) and (\pm)- $\frac{1}{\rm A}$ (2.60 g, 9.10 mmol) in benzene-n-hexane (1:2, 15 ml) was kept at room temperature for 12 h, a 1:1 mixture of $(-) - \frac{2}{5}$ and $(S) - (-) - \frac{1}{5}$ (2.0 g, 100%, [a]_D -61.3^o) was obtained as colorless prisms. Recrystallization from benzene (5 ml) gave a complex (1.66 g, 83%, mp 152-154 °C, $[\alpha]_{D}$ -69.7°) which upon chromatography gave 100% ee $(S) - (-) - \frac{1}{6}$ (1.08 g, 83%, $[\alpha]_{D} - 37.7^{\circ}$) and 100% ee (-)- $\frac{2}{6}$ (0.52 g, 74%, [α]_n -140). The mother liquor left from the initial complexation reaction was evaporated to dryness and the residue was chromatographed to give 85% ee (R)- (+)- $\frac{1}{6}$ (1.12 g, 86%, [α]_n +32.1[']). When a solution of the 85% ee (R)-(+)- $\frac{1}{6}$ (1.12 g, 3.92 mmol) and 100% ee (+)- $\mathcal{Z}_{\mathcal{K}}$ (0.60 g, 3.92 mmol, [α]_n +140) in benzene (10 ml) was kept at room temperature for 12 h, a 1:1 complex of $(R) - (+) - \frac{1}{k}$ and $(+) - \frac{2}{k}$ (1.52 g, 76%, mp 152-154 °C, $[\alpha]_{p}$ +69.7°) was obtained, Chromatography of the complex gave 100% ee $(R) - (+) - \frac{1}{6}$ (0.99 g, 76%, $[\alpha]_D + 37.7^\circ$) and 100% ee $(+) - \frac{2}{6}$ 0.50 g, 83%, $[\alpha]_{\text{D}}$ +140^o).

By the same procedure as that described above, ethyl m -methylphenyl sulfoxide (2d) can also be resolved easily to give 100% ee $(+)$ - and $(-)$ -enantiomers ($\left[\alpha\right]_D$ 199[°]) in almost the same yields as those of (+)- and (-)- $\mathcal{E}\mathcal{E}$. Optical resolution of $\frac{1}{k}$ by complexation with optically active $\frac{2}{k}$ was also successful. However, methyl phenyl sulfoxide $(2a)$ was poorly resolved by one ab complexation with optically active $\frac{1}{h}$, and gave approximately 5% ee enantiomer, Interestingly, methyl o -methylphenyl ($2p$) and methyl p -methylphenyl sulfoxide ($2e$) did not form complex with 1 , These results show that molecular shape of sulfoxide is important for the formation of complex with $\frac{1}{k}$ and for efficient chiral recognition in the complex. These are interesting subjects in molecular science.

Some dialkyl sulfoxides (2) are also available to the mutual optical resolution with l . n-Butyl methyl (λ a) and methyl n-propyl sulfoxide (λ d) are easily resolved by the complexation with optically active $\frac{1}{k}$ to give 100% ee (+) - and (-)-enantiomers of λ_0 ([a]_D 111^o) and of λ_0 ([a]_D 123^o), respectively in good yields. Of course, optical resolution of $\frac{1}{b}$ by complexation with optically active $\lambda \in \mathcal{X}$ was also successful. However, optical resolution of ibutyl methyl ($3b$) and ethyl methyl sulfoxide ($3f$) was not effective and approximately 25% ee enantiomer of $3k$ and $3f$ were obtained by one complexation with optically active $\frac{1}{\lambda}$. s-Butyl methyl ($\frac{2}{\lambda}$) and methyl i-propyl sulfoxide $(3e)$ did not form complex with $\frac{1}{k}$.

We also found that $\frac{1}{k}$ forms crystalline complex with various ketones, ethers, amines, and amides. Application to their resolutions is interesting, REFERENCES AND NOTES

- l. (a) F. Toda, K. Tanaka, T. Omata, K. Nakamura, and T. Ōshima, *J. Am. Chem* **SOC.) 105,** 5151 (1983). (b) K. Tanaka and F. Toda, Chem. *Commun.,* 1983,1513.
- 2. E. P. Kyba, G. W. Gokel, F. de Jong, K. Koga, L. R. Sousa, M. G. Siegel, L. Kaplan, G. D. Y. Soga, and D. J. Cram, *J. Org. Chem., 42,* 4173 (1977).
- 3. (a) R. Noyori, I. Tomino, and Y. Tanimoto, *J.* Am. *Chem. Sot., 101,* 1231 (1979) . (b) R. Noyori, I. Tomino, and M. Nishizawa, $ibid.$, 101, 5843 (1979). (c) M. Nishizawa, M. Yamada, and R. Noyori, Tetrahedron *Lett,, 22,247* (1981).
- 4. M. Sepulchre, N. Spassky, C. Mark, and V. Schuring, *Makromol. Chem., Rapid Commun.,* 2, *261* (1981).
- 5. S. Miyano, M. Tobita, M. Nawa, S. Sato, and H. Hashimoto, *Chem. Commun.,* 1980, 1233.
- 6. (a) W. H. Pirkle and J. L. Schreider, J, Org. *Chem., 46, 4988* (1971). (b) J. Jacques and C. Fouquey, *Tetrahedron Lett.,* 1971, 4617,
- 7. (a) A. I. Meyers and K. A. Lutowski, *J. Am, Chem, Sot., 104, 879* (1982). (b) J. M. Wilson and D. J. Cram, ibid., 104, 881 (1982). (c) J. Brussee and A. C. A. Jansen, *Tetrahedron Lett., 24, 3261* (1983).
- 8. (a) M. Milolajczyk, J. Drabowicz, and F. Cramer, *&i&m, Commun., 1971, 317.* (b) P. W. B. Harrison, *J. Chem, Sot., 1926, 2079.*
- 9. (a) K. K. Anderson, W. Gaffield, N. E. Papanikolaou, J. W. Foley, and R. I. Perkins, *J. Am. Chem. Sot., 86, 5637* (1964). (b) M. Axelrod, P. Bickart, J. Jacobus, M. M. Green, and K. Mislow, ibid., 90, 4835 (1968). (c) D. N. Harpp, S. M. Vines, J. P. Montillier, and T. H. Chan, *J. Org. Chem.,g, 3987 (1976).*
- 10.All the $\lceil \alpha \rceil$ values of \downarrow , sulfoxides $(2, 2)$, and complex of \downarrow and sulfoxide were measured in THF, EtOH, and EtOH, respectively, at a concentration $c1.0$ with a 1-dm cell at 25 $^{\circ}$ C.
- ll.All the chromatographies were carried out on silica gel by using benzeneethyl acetate (1:1) as solvent. Complex of $\frac{1}{k}$ and $\frac{2}{k}$ or $\frac{3}{k}$ can also be decomposed into the component by dissolving in aqueous sodium hydroxide.
- 12. The enantiomeric excess (% ee) of λ and λ was determined by NMR analysis in CDCl₃ using the chiral shift reagent, tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorato]europium(III).

(Received in Japan 14 June 1984)